En mi post de ayer, haciendo ejercicios sobre algunas preguntas que suelen hacerse para medir lógica, estrategia y resolución de problemas, hice mención a Adrian Paenza.
Hoy, leyendo el diario, encuentro una nota sobre Adrián en el diario La Nación, donde gratamente y quizás expresando el por qué de mi sugerencia de leerlo, se publica una sección de la edición 3 de su libro, y la copio a continuación.
No suelo "copiar" y "pegar" pero vale la pena.
De... Matemática... ¿estás ahí? Episodio 3,14159
Capítulo: Juegos y matemática.
La matemática tiene una rama que se llama “Teoría de juegos”. Sí: teoría de juegos. ¿No debería ser suficientemente atractiva una ciencia que ofrece juegos en su menú? ¿No sería interesante considerarla como alternativa para estimular a los niños/jóvenes en el colegio? Ahora bien: ¿de qué se trata esta teoría? Se trata de aprender y diseñar estrategias para ganar, y que sirven en la vida para enfrentar situaciones cotidianas. Obviamente, nadie puede asegurar un triunfo (porque todos los participantes podrían haber estudiado del mismo libro), pero se trata de encontrar la mejor manera (la más “educada”) de jugar a un juego, o de enfrentar un problema de la vida diaria. Quiero empezar con lo que se llama pensamiento estratégico. Dos personas o grupos compiten para conseguir algo que está en juego. Puede ser una partida de ajedrez, un partido de fútbol, pero también una licitación que hace un gobierno para adjudicar cierto tipo de telecomunicaciones, o la electricidad. Incluso, individuos que quieren conseguir un trabajo. Usted y el otro, o usted y los otros, alguien puja con usted para obtener algo. Este (esos) otro(s) piensa(n) igual que usted, al mismo tiempo que usted, acerca de la misma situación. En todo caso, se trata de saber quién es capaz de maximizar el retorno (en el sentido de “ganancia”).
En esencia, se trata de diseñar una estrategia para enfrentar a sus oponentes, que deberá incluir inexorablemente cómo anticiparse a lo que ellos van a hacer, cómo contrarrestarlos, y cómo hacer para que prevalezca su posición o, si lo prefiere, cómo hacer para que pueda ganar usted. Por supuesto, así como tendrá que considerar qué es lo que el otro jugador está pensando, él, a su vez, tendrá que considerar lo que piensa usted. Y justamente, la Teoría de juegos es el área de la matemática que se ocupa de cómo optimizar ese tipo de toma de decisiones, y se basa en generar y estudiar modelos que simulan interacciones entre dos (o más) partes, y encontrar la estrategia más adecuada para obtener un objetivo determinado. Y acá entra en escena el comportamiento racional. ¿Qué quiere decir? Uno puede decir que actúa con racionalidad cuando: –piensa cuidadosamente antes de actuar; – es consciente de sus objetivos y preferencias; –conoce sus limitaciones; – sabe cuáles son las restricciones que impone el contorno; – estima qué va a hacer su oponente de acuerdo con lo que usted cree que son sus virtudes y flaquezas; – puede anticipar varias jugadas; – puede imaginar diferentes escenarios. La Teoría de juegos agrega una nueva dimensión al comportamiento racional, esencialmente, porque enseña a pensar y a actuar en forma educada cuando uno tiene que enfrentarse con otras personas que usan las mismas herramientas. Como escribí más arriba, la Teoría de juegos no se propone enseñar los secretos de cómo jugar “a la perfección”, o garantizar que nunca va a perder. Eso ni siquiera tendría sentido pensarlo, ya que usted y su oponente podrían estar leyendo el mismo libro, y no podrían ganar al mismo tiempo. La mayoría de los juegos son lo suficientemente complejos y sutiles, e involucran decisiones basadas en la idiosincrasia de las personas o en elementos azarosos, como para que ni la Teoría de juegos (ni nada) pueda ofrecer una receta que garantice el éxito. Lo que sí provee son algunos principios generales para aprender a interactuar con una estrategia. Uno tiene que suplementar estas ideas y métodos de cálculo con tantos detalles como le sea posible, de manera tal de dejar librado al azar, justamente, lo menos posible, para de esa forma ser capaz de diseñar lo que se denomina “la estrategia óptima”. Los mejores estrategas mezclan la ciencia que provee la Teoría de juegos con su propia experiencia. Pero un análisis correcto de cualquier situación involucra también aprender y describir todas las limitaciones. Tome cualquier juego en el que haya interacción y apuestas entre los participantes. Por ejemplo, truco, tute o póquer, por sólo nombrar algunos de los más comunes. Parte de la estrategia es saber “mentir”. Pero, otra vez, ¿qué quiere decir saber mentir en este caso? Me explico: aunque parezca loco, se trata de que quien no tiene una buena mano, o no tiene buenas cartas, alguna vez sea descubierto por sus rivales. Lea de nuevo lo que dice: uno necesita que los oponentes lo descubran (a uno) mintiendo. ¿Por qué? Sencillamente, porque no es bueno para usted que se sepa de antemano que, siempre que usted hace una apuesta o un desafío de cualquier tipo, lo hace porque tiene buenas cartas. (...)
Para saber más: www.sigloxxieditores.com.ar
No hay comentarios:
Publicar un comentario